Settings
config = {
# animation
"fps": 8,
"max_frames": 50,
# dask
"batch_size": 10,
"processes": True,
"threads_per_worker": None,
# intro
"intro_pause": 2,
"intro_watermark": "made with streamjoy",
"intro_background": "black",
# from_url
"max_files": 2,
# matplotlib
"max_open_warning": 100,
# output
"in_memory": False,
"scratch_dir": "streamjoy_scratch",
"uri": None,
# imageio
"codec": "libx264",
"loop": 0,
"ending_pause": 2,
# gif
"optimize": False,
# image text
"image_text_font": "Avenir.ttc",
"image_text_size": 20,
"image_text_color": "white",
"image_text_background": "black",
# notebook
"display": True,
# logging
"logging_success_level": 25,
"logging_level": 25,
"logging_format": "[%(levelname)s] %(asctime)s: %(message)s",
"logging_datefmt": "%I:%M%p",
"logging_warning_color": "\x1b[31;1m",
"logging_success_color": "\x1b[32;1m",
"logging_reset_color": "\x1b[0m",
}
obj_handlers = {
"xarray.Dataset": "_expand_from_xarray",
"xarray.DataArray": "_expand_from_xarray",
"pandas.DataFrame": "_expand_from_pandas",
"pandas.Series": "_expand_from_pandas",
"holoviews": "_expand_from_holoviews",
}
file_handlers = {
".nc": {
"import_path": "xarray.open_mfdataset",
},
".nc4": {
"import_path": "xarray.open_mfdataset",
},
".zarr": {
"import_path": "xarray.open_zarr",
},
".grib": {
"import_path": "xarray.open_mfdataset",
"kwargs": {"engine": "cfgrib"},
},
".csv": {
"import_path": "pandas.read_csv",
"concat_path": "pandas.concat",
},
".parquet": {
"import_path": "pandas.read_parquet",
"concat_path": "pandas.concat",
},
".html": {
"import_path": "pandas.read_html",
"concat_path": "pandas.concat",
},
}